A pragmatic approach to detect SPICE-metabolites in urine with HPLC-MS/MS

Lars Kröner¹, Victoria C. Spencer²

¹Laboratoriumsmedizin Köln, Classen-Kappelmann-Str. 24, D-50931 Köln ²Institut für Rechtsmedizin, Forensische Toxikologie, Frankfurter Straße 58, D–35392 Gießen

Abstract

Aim: A mayor problem making the detection of SPICE-Substances in urine so difficult is the high volatility of the current drug market. Metabolites of the main SPICE-compounds are hardly available and cause high costs. A pragmatic approach had to be found to counter the above mentioned difficulties in SPICE-Metabolite-Analyses. Methods: From the known substance-structure one can conclude the molecular weight of the monohydroxylated metabolite, known as Q1-mass for the LC/MS-MS detection. It does not matter where exactly the monohydroxylation takes place the molecular weight remains the same, as well as the m/z of the produced fragments. These fragments can be theoretically determined and conduce to the Q3 m/z. The urine sample preparation includes an incubation step with β -glucuronidase and a liquid/liquid extraction with 1-chlorbutane. The organic phase has to be evapourated and reconstituted and is now prepared for LC/MS-MS -Analyses. A reliable Immunoassay can be performed. Results: Analysed authentic urine samples containing the monohydroxylated metabolites of the commonly used SPICE-Substances AM-2201 and JWH-122 have shown the expected and theoretically determined fragmentation pattern in LC/MS-MS analyses. Subsequently performed immuno analyses showed 100% accordance to the LC/MS-MS findings. Conclusion: Given the fact that in authentic urine samples the theoretically determined fragments can be detected one can conclude that the presented pragmatic approach holds true for all metabolised SPICE-Substances. Therefore the laboratories are not dependent on commercially available metabolites to perform LC/MS-MS analyses to detect SPICE-metabolites in urine.

1. Introduction

For the past few years, a new type of drug has been flooding the European market: synthetic cannabinoids, better known as "SPICE"- substances [1]. They are easily obtained through the internet and not fully regulated by the German "Dangerous Drugs Act"(Betäubungsmittel Gesetz) [2]. The SPICE-market is extensively volatile and therefore a huge number of newly developed substances offer a wide choice for the SPICE-user every month. These preconditions form the main problems for the analysis:

- 1) The commonly detected metabolites in urine are scarcely obtainable through a standard-provider (and in some cases the main metabolites still remain unknown).
- 2) The variety of new substances makes it nearly impossible to keep up with the market conditions.
- 3) The purchase of all the reference material causes high costs and leads inevitably to non economical investments.

To find a solution for the above mentioned problems, a new pragmatic approach had to be found: Considering the fact, that many SPICE substances have a common chemical structure (e.g. N-naphtylindoles), one can assume that their metabolites are similar, too and form a similar fragmentation pattern in MS/MS analyses (Fig. 1).

The Phase-I Monohydroxylated product can be hydroxylated in several different positions, most likely on the sidechain [4].

Fig. 1. JWH-122 and possible monohydroxymetabolites, AM-2201 and possible monohydroxymetabolites (from left to right).

To determine the possible fragments in the MS/MS pattern, it is irrelevant to know exactly where the hydroxylation occurs. The fragments will have the same mass, no matter where the main substance is hydroxylated. With help of this assumption, a theoretical fragment pattern of the monohydroxylated metabolites can be postulated [3]. This holds true for several related substances and therefore can be transferred to a number of SPICE-molecules with monohydroxylated metabolites (Tab 1).

Analyte as Monohydroxymetabolite	Q1	Q3
JWH-018	358,2	155,1
JWH-073	344,2	155,1
JWH-250	352,2	149,1
1-Butyl-3-[-1-(4-Methylnaphtoyl)]-indole	358,2	169,1
JWH-081	388,2	185,1
AM-2201	376,2	155,1
JWH-122	372,2	169,1
RCS-4	338,2	135,1
JWH-210	386,2	183,1
JWH-200	401,2	155,1
1-Butyl-3-[-1-(4-Methoxybenzoyl)]-indole	324,2	135,1
WIN 55,212-2	443,2	155,1
AM 694	452,2	231
JWH-203	356,2	153,1
JWH-007	372,2	155,1
AM-1220	399,2	155,1
3-(-1-Adamantoyl)-1-pentylindole	366,2	163,1
1-(5-Fluorpentyl)-3-(1-(4-methylnaphtoyl))indole	390,2	169,1
3-[(2-Methoxyphenyl)acetyl]-1-((methylpiperidin-2-	393,2	149,1
yl)methyl]indole	344,2	155,1
JWH-015	336,2	133,1
JWH-251	395,2	135,1
WIN 48,098	392,2	189,1
JWH-398	392,2	149,1
RCS-8	436,2	233,1
JWH-387	,	*

Tab. 1. Masses of several different SPICE-substances and their possible theoretically determined monohydroxylated metabolites.

2. Material and Methods

2.1. Sample Preparation

500 μ L urine are spiked with 20 μ L Internal Standard (in this case either AM 2201 or MDPVd8). The pH is adjusted to pH 5 with 100 μ L phosphate buffer. The whole sample is treated with 25 μ L glucuronidase/arylsufatase and incubated for 6 h at 37 °C. After the incubation period, 1 mL 1-chlorbutane is added to the sample for liquid/liquid extraction. The thoroughly mixed sample undergoes centrifugation, the supernatant is evaporated and resolved with a mixture of 75 μ L acetonitrile/water/formic acid and is now ready LC/MS-MS analysis.

2.2. Immunoassay

In addition to the LC/MS-MS analyses, a homogenous immunoassay was evaluated, which is sensitive for a number of main substances as well as for monohydroxylated and carboxy metabolites (Specialty Diagnostix GmbH Passau, Tab. 2). The immunoassay was calibrated with the substance JWH-018 N-pentanoic acid and is designed for human use only.

Analyte	[%] Cross reactivity
JWH-018 N-pentanoic acid	100
JWH-018 4-hydroxyindole	1,4
JWH-018 5-hydroxyindole	1,8
JWH-018 N-(5-hydroxypentyl)	125
JWH-018 N-(5-hydroxypentyl)-β-D-glucuronide	91
JWH-073 6-hydroxyindole	25
JWH-073 N-(4-hydroxybutyl)	132
JWH-073 N-butanoic acid	83
JWH-122 N-(4-hydroxypentyl)	13
AM-2201 6-hydroxyindole	26
AM-2201 N-(4-hydroxypentyl)	133
3-(1-naphtoyl)-1H-indole	16
Cannabipiperidiethanone	0.03
JWH-007	0.7
JWH-015	3
JWH-018	15
JWH-019	1.8
JWH-022	27
JWH-073	23
JWH-081	0.05
JWH-122	1.2
JWH-200	67
JWH-201	0.01
JWH-250	0.02
JWH-398	0.4
AM-1220	50
AM-2201	33
AM-2232	94
AM-2233	1.5

Tab. 2. Cross reactivity with related drugs.

Within-run Precision	Blank	Low Control	Cut-off Cal.	High Control
Targets [ng/ml]	0.0	10.0	20.0	30.0
Mean (mAbs/min)	426	464	498	525
Total CV [%]	0.39	0.48	0.48	0.70
Mean (ng/ml) *	-0.01	10.46	19.93	27.51
Total CV [%] *		5.90	3.40	3.70
*Concentration data (in ng/ml) was calculated based on mAbs/min data sets				

Tab. 3. Qualitative precision: 20 ng/mL cut-off intra-day-run (1 run, N = 40 reps. per level).

Tab. 4. Qualitative precision: 20 ng/mL cut-off Inter-Day-Run (20 reps. per run, 2 runs a day over 4 days, being N = 160)

Total Precision	Blank	Low Control	Cut-off Cal.	High Control
Targets [ng/ml]	0.0	10.0	20.0	30.0
Mean (mAbs/min)	429	468	502	526
Total CV [%]	0.53	0.75	0.88	0.95
Mean (ng/ml) *	-0.03	10.68	19.87	26.50
Total CV [%] *		9.00	6.10	5.20
*Concentration data (in ng/ml) was calculated based on mAbs/min data sets				

Accuracy was tested by sixty-seven native urine samples which were analysed with the Immunanalysis Synthetic Cannabinoid Assay at 20 ng/mL on a Beckmann AU 400 analyzer and by LC/MS-MS.

Tab. 5. Comparison of the results gained by the immunoassay- and LC/MS-MS analyses.

20 ng/mL Qualitative		LC/MS-MS		
		+	-	
Beckmann AU 400	+	30	0	
	-	1*	36	
*the false negative tested sample in the validation process contained JWH-250 which has				
a only a 1 % cross reactivity with the Immunoassay. [5]				

2.3. LC-MS/MS Parameters

For LC-MS/MS analysis the AB Sciex API 4000 QTrap was used employing a PFP column. With a flow rate of 1000 μ L/min for the first 15 minutes of the run the following gradient was used employing 0.2 % ammonium formate, 0.2 % formic acid as solvent A and ACN as solvent B: 10 % B increase to 90 % B at 5.33 %/min, 90 % B for 5.0 min, decrease to 10 % B at 160 %/min and 10 % B for 2.5 min.The MRM- Transitions are listed in Tab. 1. Further MS-Parameters are for instance the Declustering-Potential (DP): 40 eV, the Collision-Energy-Spread (CES) of 20, 35 and 50 eV and the Cell-Exit-Potential (CXP):15 eV. The Scan rate was set to 4000 Da/s.

3. Results and Discussion

More than 1000 urine samples were tested with the above mentioned LC-MS/MS-method for monohydroxylated synthetic cannabinoids. Positive results were obtained in about 10% of total number of specimen. In the majority of the positive cases, hydroxybutyl and hydroxypentyl metabolites of the active compounds AM-2201 were detected, followed by hydroxypentyl metabolites of JWH-122, JWH-018, RCS-04 and JWH-210.

Fig. 2. Enhanced product ion scan of AM-2201 metabolite and JWH-122 metabolite in urine.

One can see in the chromatograms above (Fig. 2) that the main masses resulting from the fragmentation-process are the masses 169.2 and 141.2 for the monohydroxylated JWH-122 metabolite and the masses 154.9 and 127.0 for the monohydoxylated AM-2201 metabolite. These masses (169.2; 141.2; 154.9; 127) found in authentic urine are consistent with the expected calculated masses and proof the accuracy of the presented pragmatic approach. All of the subsequently performed immunoassays showed 100% accordance. No false positive results were observed.

Substance	LOD [ng/mL]	LOQ [ng/mL]
JWH-018	0.9	2.1
JWH-122	0.8	2.3
AM-2201	1.2	3.2

Tab. 6. Analytical limits (DIN 32645).

4. Conclusions

The three main problems presented in the introduction can be solved with this pragmatic approach:

- 1) The formerly unknown metabolites are provided by the consumer himself in his own urine sample.
- 2) The laboratory analyses can react fast enough to keep up with the current market.
- 3) There is no need to require the Standard solutions and therefore noneconomical expenses are unnecessary.

The additionally performed immunoassay showed an excellent performance resulting in 100 % sensitivity and specificity in this study.

5. References

- [1] Auwärter V, Dresen S, Weinmann W, Ferreirós N. "SPICE" sowie weitere Räuchermischungen enthalten Designer-Cannabioid. Toxichem Krimtech 2008;75:127.
- [2] BtMG: Auflage I (zu § 1 Abs. 1) (nicht verkehrsfähige Betäubungsmittel).
 "Betäubungsmitelgesetz in der Fassung der Bekanntmachung vom 1. März 1994 (BGBI. I S. 358), das zuletzt durch Artikel 4 des Gesetzes vom 19. Oktober 2012 (BGBL. I S. 2182) geändert worden ist"
- [3] Meyer MR, Maurer HH. Current applications of high-resolution mass spectrometry in drug metabolism studies. Anal Bioanal Chem 2012;403:1221-1231.
- [4] Wohlfarth A, Scheidweiler KB, Chen X, Liu H, Huestis MA. Qualitative confirmation of 9 synthetic cannabinoids and 20 metabolites in human urine using LC-MS/MS and library search. Anal Chem 2013;85:3730-3738.
- [5] Speciality Diagnostix GmbH, Senefelder Straße 18, D-94036 Pasau, Germany, E-Mail: info@specialitydiagnostix.com.